The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth.
نویسندگان
چکیده
Polarisation of the actin cytoskeleton must cease during cytokinesis, to support efficient assembly and contraction of the actomyosin ring at the site of cell division, but the underlying mechanisms are still understood poorly in most species. In budding yeast, the Mitotic Exit Network (MEN) releases Cdc14 phosphatase from the nucleolus during anaphase, leading to the inactivation of mitotic forms of cyclin-dependent kinase (CDK) and the onset of septation, before G1-CDK can be reactivated and drive re-polarisation of the actin cytoskeleton to a new bud. Here, we show that premature inactivation of mitotic CDK, before release of Cdc14, allows G1-CDK to divert the actin cytoskeleton away from the actomyosin ring to a new site of polarised growth, thereby delaying progression through cytokinesis. Our data indicate that cells normally avoid this problem via the MEN-dependent release of Cdc14, which counteracts all classes of CDK-mediated phosphorylations during cytokinesis and blocks polarised growth. The dephosphorylation of CDK targets is therefore central to the mechanism by which the MEN and Cdc14 initiate cytokinesis and block polarised growth during late mitosis.
منابع مشابه
Dbf2–Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis
Exit from mitosis is characterized by a precipitous decline in cyclin-dependent kinase (Cdk) activity, dissolution of mitotic structures, and cytokinesis. In Saccharomyces cerevisiae, mitotic exit is driven by a protein phosphatase, Cdc14, which is in part responsible for counteracting Cdk activity. Throughout interphase, Cdc14 is sequestered in the nucleolus, but successful anaphase activates ...
متن کاملDownregulation of PP2ACdc55 Phosphatase by Separase Initiates Mitotic Exit in Budding Yeast
After anaphase, the high mitotic cyclin-dependent kinase (Cdk) activity is downregulated to promote exit from mitosis. To this end, in the budding yeast S. cerevisiae, the Cdk counteracting phosphatase Cdc14 is activated. In metaphase, Cdc14 is kept inactive in the nucleolus by its inhibitor Net1. During anaphase, Cdk- and Polo-dependent phosphorylation of Net1 is thought to release active Cdc1...
متن کاملAsymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis
The inactivation of mitotic cyclin-dependent kinases (CDKs) during anaphase is a prerequisite for the completion of nuclear division and the onset of cytokinesis [1, 2]. In the budding yeast Saccharomyces cerevisiae, the essential protein kinase Cdc15 [3] together with other proteins of the mitotic exit network (Tem1, Lte1, Cdc5, and Dbf2/Dbf20 [4-7]) activates Cdc14 phosphatase, which triggers...
متن کاملIdentification of Cdk targets that control cytokinesis
The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ing...
متن کاملSeparase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase
Completion of mitotic exit and cytokinesis requires the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. A key enzyme that counteracts Cdk during budding yeast mitotic exit is the Cdc14 phosphatase. Cdc14 is inactive for much of the cell cycle, sequestered by its inhibitor Net1 in the nucleolus. At anaphase onset, separase-dependent down-regulation of PP2A(Cdc55) allows phosphory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 31 17 شماره
صفحات -
تاریخ انتشار 2012